Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Proposal of laser-induced ultrasonic guided wave for corrosion detection of reinforced concrete structures in Fukushima Daiichi Nuclear Power Plant decommissioning site

Furusawa, Akinori; Takenaka, Yusuke; Nishimura, Akihiko

Applied Sciences (Internet), 9(17), p.3544_1 - 3544_12, 2019/09

 Times Cited Count:9 Percentile:61.01(Chemistry, Multidisciplinary)

Remote-controlled, non-destructive testing is necessary to detect corrosion of the reinforced concrete structures at the Fukushima Daiichi Nuclear Power Plant (NPP) de-commissioning site. This work aims to demonstrate that laser-induced ultrasonic guided wave technology can be applied to achieve this task. Hence, accelerated electrolytic corrosion is performed on a reinforced concrete specimen fabricated by embedding a steel rod into mortar. Waveforms of the laser-induced ultrasonic guided wave on the rod are measured with a previously employed piezoelectric transducer (PZT) probe, for each fixed corrosion time. Based on the results of Fourier and wavelet transforms of the waveforms, issues concerning the detection and extent of rebar corrosion are discussed. It is exhibited that the changes in bonding strength due to corrosion are distinguishable in the frequency domain of the ultrasonic signal.

Journal Articles

Ultrasonic guided wave approach for inspecting concave surface of the laser butt-welded pipe

Furusawa, Akinori; Nishimura, Akihiko; Takebe, Toshihiko*; Nakamura, Masaki*; Takenaka, Yusuke*; Saijo, Shingo*; Nakamoto, Hiroyuki*

E-Journal of Advanced Maintenance (Internet), 9(2), p.44 - 51, 2017/08

The aim of this work is to investigate the applicability of ultrasonic guided wave for evaluation of laser beam butt-welding quality. Ten in total test pipes having welding seam is prepared. Two piece of pipe are jointed and continuous laser beam is irradiated on the edges, varying laser irradiation power, welding side and surface profile of the adjacent edges of the pipe. Ultrasonic guided wave testing experiment is performed on the pipes. Torsional mode guided wave is excited by EMAT. The experimental results are analyzed and issues are discussed. The reflection wave bullet from the poor interface of the welding seam is clearly observed, whereas no reflection from fine welded line. From the aspect of laser irradiation power, welding side and surface profile of the adjacent edges, the relation between the interface condition and detection wave bullet are analyzed. It is found that the ultrasonic guided wave technologies have the potential for evaluating laser beam butt-welding seam.

Journal Articles

An Approach for remote nondestructive testing method for concrete structure using laser-generated ultrasonic

Furusawa, Akinori; Nishimura, Akihiko; Takenaka, Yusuke*; Nakamura, Kaori*

Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 6 Pages, 2017/00

Testing of concrete structures in NPPs is needed to guarantee hereafter workability. Recent work says Core Concrete Reaction advances erosion of the concrete structures of Fukushima NPPs and it's difficult to estimate the correct depth of CCR. In addition, it is clear that seawater intrusion makes the rebar in the concrete structures corroded, thus, advanced remote testing methods for the deterioration should be considered. Gap or decrease of the adhesiveness between rebar and outer concrete appears in its deterioration process. We had a sense of possibility introducing a new testing method based on that. The concept is to propagate laser-excited ultrasonic gathering the information about the deterioration inside and received at distance with LDV. In this work, we investigate and report how it has the effect on propagating ultrasonic along the rebar to decrease adhesiveness between the rebar and the concrete experimentally.

3 (Records 1-3 displayed on this page)
  • 1